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The transverse dynamics of a nearly-monoenergetic particle beam are described by the 
evolution of the 4D distribution ƒ(x,y,x′,y′), where x and y are the transverse spatial coordinates 
and x′ ≡ px/pz and y′ ≡ py/pz are the corresponding momentum components divided by the 
longitudinal momentum component. In present-day experimental practice, such beams are often 
diagnosed by passing them through an axially-separated pair of slits parallel to the y axis. This 
selects for x and x′ and integrates over y and y′. A sequence of pulses (with the slits at various x 
positions) yields a 2D projection of the beam phase space, ƒ(x,x′). Another scanner might yield 
ƒ(y,y′) or, using crossed slits, ƒ(x,y). The challenge is that a small set of such 2D scans does not 
uniquely specify ƒ(x,y,x′,y′); correlations in planes other than those measured are unknown. We 
have developed Monte-Carlo methods and formulated physically-motivated constraints to 
synthesize a “reasonable” set of particles having 2D projectional densities consistent with the 
experimental data. Such a set may be used to initialize simulations of the downstream beam. The 
methods and their performance on model problems are described. 

PACS Codes: 29.27.-a, 29.27.Fh, 29.85.+c, 52.59.-f, 52.59.Fn, 52.59.Sa, 52.65.-y, 52.65.Rr 

I. INTRODUCTION 

In a wide variety of particle-beam applications, the beams are not well-described by 
Gaussian or other simple profiles. In induction accelerator drivers for heavy-ion beam-
driven inertial fusion energy (Heavy Ion Fusion, or HIF), and in present-day experiments 
exploring the beam physics of such drivers, the beams are space-charge-dominated, with 
spatial profiles that are observed to be far from Gaussian [1]. In other applications as 
well, e.g. radio-frequency quadrupole (RFQ) beam injection [2], the beam emerges from 
an injector with a distribution that is not well-described by a small number of moments. 

Discrete-particle simulations are commonly employed in efforts to better understand the 
behavior of such particle beams. Integrated simulations, beginning at the source and 
carried out in full time-dependent 3D or a reduced description when appropriate, offer the 
promise of the greatest fidelity in describing the long-term beam behavior. However, the 
source, injector, and beam line upstream of a section of interest in an experiment will in 
general not be completely characterized. Thus, the beam distribution function in a 
simulation beginning at the source will in general “drift” away from the experimentally 
measured beam distribution, and it can be challenging to adjust the beamline description 
and other parameters in the simulation to bring them back into agreement. Thus, as a 
complement to integrated simulations and as a tool for routine experimental analysis, we 
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are developing the ability to launch particle simulations of “real” experiments, using an 
initial beam particle distribution derived from experimental measurements at a station 
partway along the machine. 

A longitudinally-cold steady flow is often reasonably well described by a particle 
distribution in the transverse 4D phase space ƒ(x,y,x′,y′). Here, x, y, and z are orthogonal 
Cartesian coordinates (with x and y transverse to the nominal beam propagation direction 
and z along it), px, py, and pz the corresponding mechanical momentum components, and 
x′ ≡ px/pz and y′ ≡ py/pz. It is customary to work with the experimentally measured 
quantities x′ and y′ rather than with the momenta. In reality, beams have a small spread in 
pz, and indeed, particle orbits in the transverse 4D space are not independent of pz. 
Nonetheless, a longitudinally-cold beam, such as we assume in this paper, is a useful 
approximation in many applications. 

The most common beam phase-space diagnostic for intense beams is the two-slit 
emittance scan, which is used to measure a “projectional” beam emittance [3] in the 
direction perpendicular to the slits. Such an apparatus is shown schematically in Fig. 1. In 
this diagnostic, “paddles” containing the slits are moved in increments, most commonly 
by stepping motors. Behind the second paddle, a shallow, reverse-biased Faraday cup is 
commonly employed to generate the signal. A map of the beam distribution is built up 
over many pulses, between each of which one paddle or the other is moved (multi-slit 
diagnostics sometimes are employed, to similar effect). The position coordinate, x, at 
which the intensity is measured during any given beam pulse is determined by the 
position of the first slit (at the left in the figure). The transverse velocity angle of the 
measurement, x′, is determined by the position of the second slit relative to that of the 
first. The arrows in the figure denote particle trajectories, and show how each slit admits 
only a small fraction of the particles reaching that plane. A scan yields a 2D projection of 
ƒ(x,y,x′,y′), e.g., ƒ(x,x′), with the data most commonly (but not always) known at evenly 
spaced points on a slanted grid in (x,x′) that roughly overlays the beam. In addition to the 
parallel-slit emittance scan, a crossed-slit intensity map is sometimes used to map out the 
distribution of beam current density in the transverse (x,y) plane. 

Note that some diagnostic techniques can measure the 4D transverse phase space directly, 
again in a sampled sense. For example, a “gated beam imager” consisting of a multi-hole 
plate upstream of an imaging plane, microchannel plate, and detector has been used to 
obtain time-dependent 4D ion beam distributions [4]. A version of this diagnostic is to be 
developed for the higher-current experiments currently being pursued in the HIF 
program. Such diagnostics will become far more challenging as the kinetic energy and 
current are increased. For the present, the principal diagnostics in the HIF research effort 
(and in many other accelerator applications) yield projectional emittances and transverse 
density profiles. We consider the problem of synthesizing “reasonable” distributions from 
such data sets. 



 

 

FIG. 1. Schematic depiction of the principle behind a two-slit emittance scanner. 

In Section II, below, we state the problem and discuss its nature, and elaborate on the 
goals of this research. In Section III, we present a number of methods that we have 
developed for synthesis of 4D distributions. In Section IV, we describe a model problem 
and summarize the performance of the various methods when applied to it. In Section V 
we describe a problem taken from actual practice in loading a beam into an RFQ 
accelerator, and show application of some of the methods to that problem. In Section VI 
we describe another problem, this time using a simulation of an electrostatic-quadrupole 
(ESQ) injector. This problem is especially useful as a benchmark, since, in contrast with 
the experimental data available to us, the simulation data contains the full 4D phase space 
information. A final discussion and some recommendations are presented in Section VII. 

II. STATEMENT AND DESCRIPTION OF THE PROBLEM 

We seek to carry out kinetic simulations of beams (using discrete-particle methods, or 
continuum Vlasov methods wherein f is evolved on a 4D grid) using an initial beam state 
derived from experimentally measured data. Thus, we are trying to solve the problem: 

Given (x,x′), (y,y′), and optionally (x,y) projections of ƒ(x,y,x′,y′), synthesize 
an ƒ(x,y,x′,y′) which is consistent with the measured data. 

As stated immediately above, the problem itself is underdetermined. The under-
determined nature of the problem is discussed below. It is necessary to add additional 
constraints, which lead us to reformulate the problem as: 

Given (x,x′), (y,y′), and optionally (x,y) projections of ƒ(x,y,x′,y′), synthesize 
a “reasonable” ƒ(x,y,x′,y′), which is consistent with the measured data and 
with the general nature of the class of beams under study. 
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This formulation of the problem is imprecise, but it accurately reflects the goals of the 
research effort described herein. Even within this revised formulation, the problem is still 
underdetermined because we do not have precise criteria for “reasonableness,” and 
indeed we show two classes of synthesis methods which yield results on model problems 
consistent with this latter formulation. A more precise formulation of the problem, 
perhaps one based on maximum entropy considerations or other criteria, would be 
desirable, but has yet to be realized. Nonetheless, within the framework of this heuristic 
formulation, considerable benefit can be obtained by use of a “synthesized” distribution 
for downstream particle simulations. 

To better illustrate the underdetermined nature of the 4D synthesis problem, we consider 
a simpler analogue, the problem of tomographic reconstruction of a 2D distribution from 
a small number of 1D projectional densities. As shown in Fig. 2, many different 2D 
distributions can share a common pair of 1D “Cartesian” projections. The shaded areas in 
figure 2(a)-(c) depict possible 2D density distributions which are consistent with the 
presumed “measured” 1D densities ƒ(x) and ƒ(y) shown along the lower and left edges of 
the figure. In general, and roughly speaking, 2D methods analogous to the methods we 
describe herein would tend to produce distributions resembling the one shown in (c).  
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FIG. 2. Depiction of a two-dimensional analogue problem, as described in text.  

Another way to view the underdetermined nature of the problem is to consider the 
amount of information necessary to specify a 4D distribution at any chosen granularity or 
“resolution.” Consider, e.g., ƒ(x,y,x′,y′) on a 4D grid with 20 points along each Cartesian 
axis. In such a case we would need 204 = 1.6×105 points to fully specify the 4D phase 
space density. The measured (x,x′) and (y,y′) projections each consist of 400 data points, 
yielding a total of 800 data points, far fewer than is demanded by the complete 
description. Should the intensity ƒ(x,y) also be available, (highly desirable, as discussed 
later), then 1200 data points are known. We usually don’t have direct information about 
the other “Cartesian” projections (x,y′), (y,x′), or (x′,y′); but even if we knew them, plus a 
few other projections at “angles” to the principal Cartesian axes, the information 
available would be far less than that needed to specify the 4D distribution.  
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Thus, to make the problem well posed, we must add constraints based on considerations 
separate from the data, e.g., how the beam was made, and/or how it may be presumed to 
have evolved, and/or “what beams generally look like.” There is considerable 
arbitrariness in the choice of these constraints, and so multiple prescriptions may 
reasonably be employed. We proceed to describe the methods explored to date.  

III. METHODS FOR SYNTHESIZING FOUR-DIMENSIONAL DISTRIBUTIONS 

We are exploring a family of methods which yield usable “synthesized” 4D density 
distributions. All are based on Monte-Carlo sampling techniques, and are intended to 
satisfy the heuristically-stated version of the problem as noted above.  

Naïve sampling — drawing random points from a 4-box and accepting each with a 
likelihood proportional to the product of the input probabilities, ƒ(x,x′) × ƒ(y,y′) — leads 
to artifacts in the synthesized distribution which are clearly nonphysical. Specifically, 
“corners” appear in the projectional densities in those Cartesian planes for which there is 
no direct data; that is, the density contours appear rectangular. This arises because the 
naive sampling assumes that the likelihood of finding a particle in a particular bin in 
(x,x′) is independent of the bin’s location in y and y′, which is in general not the case.  

The first of the viable methods was developed by one of us (Staples), drawing on 
discussions with J. Stovall [5]. It has been successfully applied to problems associated 
with injecting a beam into an RFQ accelerator. This method also draws random points 
from a 4-box and accepts each with a likelihood proportional to ƒ(x,x′) × ƒ(y,y′), but then 
it applies “clipping,” i.e., removal of points outside a prescribed 4-volume. Because of 
the clipping, the synthesized projectional (x,x′) and (y,y′) phase spaces differ slightly 
from the measured ones. The naive sampling result is recovered as the clipping volume is 
enlarged to include the entire 4-box. This first “sampling” method is denoted “S” in the 
sections below.  

Two newer classes of algorithms exactly reproduce, in the limit of large numbers of 
particles and extremely fine data grids, the measured (x,x′) and (y,y′) data; some can 
reproduce the measured (x,y) data as well when that data is available. These 
“generalized” methods are denoted “G” in the sections below, followed by a digit 
identifying the actual method used. The methods in one class resemble the S method in 
that they also use random sampling from a user-specified sampling (clipping) region 
within a 4-box; they are, essentially, statistically-correct variants of the S algorithm. 
Another class of methods is based on the assumption of a certain kind of anticorrelation 
of (x,x′) and (y,y′) densities, as described below.  

None of the newer methods is “fully virtuous;” that is, different problems seem to benefit 
from the use of different methods. All can give the “exact” answer (limited only by 
fluctuations and grid resolution errors) on certain model problems. Thus, in this paper we 
describe the most useful of the methods we have developed, outline their strengths and 
weaknesses, and show examples of their use.  
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We present three statistically-correct sampling-region methods. The first of these, G1, is 
based on the use of “bin counts” to ensure reproduction of the data in the input planes 
within resolution-induced errors; the use of “bins” minimizes the fluctuation error but 
introduces other difficulties, described below. The second, G2, uses corrected 
probabilities to obtain consistency with the input data; it is an extremely simple and 
robust method, but does introduce bin-count fluctuations in ƒ which scale inversely as the 
square root of the number of particles in the bin. The third, G7, is a three-plane variant of 
G1, using (x,y) data as additional input. We also present one anticorrelation-based 
method, G3, which requires no user-specified sampling region; it works well when the 
assumptions upon which it is based are satisfied, but fails in other cases.  

Preliminary Steps 

For all algorithms, certain preliminary steps are generally carried out. Any known biases 
in the  “raw” experimental data, e.g. offsets in the zero-beam signal, should be removed 
first. The raw data often suffer from some level of random noise, and so “thresholding” 
of some type is typically used. Thresholding in our testbed program is controlled by the 
input parameters THRESHXXP, THRESHYYP and THRESHXY (corresponding to the principal 
planes for which experimental data may be available). Two prescriptions are available; 
for, e.g., the (x,x′) plane, the prescription to be used is selected by the sign of THRESHXXP. 
In the first prescription, a threshold value is subtracted from all data points, with any 
negative results zeroed; in the second, any points below a threshold value are zeroed:  

for THRESHXXP > 0: ƒ(x,x′) =  max{0, ƒraw(x,x′) - THRESHXXP max[ƒraw(x,x′)]} ; (1) 

for THRESHXXP < 0: ƒ(x,x′) = ƒraw(x,x′)   if ƒraw(x,x′) > |THRESHXXP| max[ƒraw(x,x′)] 
(2)

 

 = 0               if ƒraw(x,x′) < |THRESHXXP| max[ƒraw(x,x′)] 

where the usual maximum operator, “max,” is employed. The former prescription yields 
data that tends to approach zero smoothly, but alters all data points; the latter tends to 
yield a “cliff” at the edge of the distribution, but leaves the retained data unchanged. For 
“good” data with low noise, they may be expected to perform comparably. 

The thresholded signal values (values of ƒ) are then renormalized to range from zero to 
unity. This yields the “true” experimental data sets: ƒ(x,x′), ƒ(y,y′), and in some cases 
ƒ(x,y), that serve as inputs to the actual synthesis process. Further operations do not alter 
the ƒ values, but rather transform the nodal coordinates with which they are associated.  
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For computational convenience we translate the experimental data along each of its axes 
so that the center of mass is at (0,0) in each measured plane, so that (e.g.) 〈x〉 = 0 and 
〈x′〉 = 0, etc. It is straightforward to shift the distribution back after it has been 
synthesized. The translation is accomplished by changing the nodal coordinates indexed 
by the “logical” grid coordinates i and j:  

ij = xraw ij - 〈xraw〉 (3)  

 x′ij = x′raw ij - 〈x′raw〉 (4)  

where the averages are computed by multiplying the nodal-coordinate expressions by the 
measured signal and summing:  

 〈xraw〉 = Σij xraw ij ƒij  /  Σij ƒij (5)  

 〈x′raw〉 = Σij x′raw ij ƒij  /  Σij ƒij . (6)  

Note that we have indexed x and x′ each by two subscripts, i and j. In most cases it will 
suffice to use a single subscript for each, that is, xi and x′j. The notation we have used 
allows for the possibility of a nonuniform mesh wherein, e.g., the set of nodal x′ locations 
may differ at different x locations (some HIF experimental data is indeed taken that way). 

It is inefficient to overlay a Cartesian grid on the projectional phase space density of a 
strongly converging (or diverging) beam because the range of x′ values associated with 
the mean convergence can easily exceed that due to the thermal spread. Furthermore, it 
can be difficult to display the phase space of such a beam because a contour plot can 
resemble a thick line. Thus, the mean convergence or “tilt” in each plane (e.g., linear 
correlation of x and x′) is generally removed by subtracting the product of the x values of 
the data nodes and the mean slope from the x′ values of the nodes at which the data is 
obtained. This leads to a revised set of nodal coordinates (denoted, here only, by upper 
case symbols, which we proceed to drop in favor of lower case in the following sections): 

 X′ij = x′ij - ψx xij (7) 

 Xij = xij (8)  

where, assuming that the center of mass has been shifted to the origin as mentioned 
above, the convergence ψx is given by: 

 ψx = 〈x x′〉/〈x2〉 . (9) 

Here, the averages are computed using the measured distribution functions: 

 〈x x′〉 = Σij (x x′)ij ƒij  /  Σij ƒij (10) 

 〈x2〉 = Σij (x
2)ij ƒij  /  Σij ƒij  .  (11) 
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When the distribution function ƒij is plotted using the revised nodal coordinates (Xij,X′ij) 
as the independent variables, in a contour plot, a colored (filled) mesh plot, or a 
“mountain range” plot, it retains no net “tilt,” though it may have much structure. 

When the raw data are taken on a regular but “slanted” grid, it may be preferable to 
remove, not the mean convergence of the measured distribution, but rather the mean tilt 
of the grid of points on which the measurements are made. Then, one is left with data on 
a regular Cartesian grid and no further mapping to such a grid (as described below) is 
necessary; but some net linear correlation between positions and transformed velocities 
remains. In either case, it is straightforward to restore the net convergence to the 
synthesized distribution by means of an operation inverse to the original transformation. 

A complication arises in practice when, as is often the case, the (x,x′) and (y,y′) slit scans, 
and perhaps the (x,y) scan as well, are not carried out at the same longitudinal position. 
Then it is necessary to map the measured data onto new grids at a common value of z. 
This may be accomplished only approximately, perhaps using a linear transformation 
based on velocities and applied focusing forces at the measured plane and a simple model 
for the space charge, or perhaps through a more  elaborate procedure, yet to be worked 
out, more akin to a short simulation run. 

Another complication can arise when, as is highly desirable, the spatial density ƒ(x,y) is 
measured along with ƒ(x,x′) and ƒ(y,y′): the one-dimensional projectional densities 
n1(x) = ∫dx′ ƒ(x,x′) and n2(x) = ∫dy ƒ(x,y) may disagree with each other. This may arise 
because the various 2D planes use differing grids for (e.g.) x; because the data in the 
coordinate being integrated over is merely sampled, so that an exact integration is 
impossible; because the measurements are made at differing values of z; and/or because 
of noise or other experimental measurement errors. If all three planes are to be used in the 
synthesis, some reconciliation procedure is necessary. The procedure to be used will 
depend upon the relative resolution and accuracy of the various measurements. For 
example, if the spatial density scan is deemed most trustworthy, then the densities on the 
ƒ(x,x′) grid may be renormalized to bring n1(x) into agreement with n2(x). Some of the 
statistical methods may be robust to small errors of this type. We have, as yet, only done 
three-plane syntheses using simulated data, so we have yet to face this difficulty in 
practice. 

Yet another complication arises if the raw data is accumulated on an irregular grid. In 
such cases, a remapping onto a (usually somewhat finer) regular mesh is carried out (for 
some of the methods this may not be strictly necessary). Here care is needed to avoid 
artificial spreading of the distribution. It is in general preferable to employ a “nearest grid 
point” remapping, where the projectional phase-space area associated with each point of 
the original data grid matches (at least approximately), in size and in position, the area of 
the set of points on the regular grid into which that value is mapped.  

In our testbed program, the net “tilt” (convergence) is removed and the remapping to the 
regular mesh carried out before any thresholding is performed. For the remapping we 
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employ, and because the experimental data with which we are dealing always uses fixed 
increments in x and x′ (even when an irregular grid is used, as in some HIF experiments 
to which we are beginning to apply these methods), there is a one-to-n correspondence of 
raw nodes to remapped nodes. Thus the order of the remapping and thresholding 
operations is usually not important. However, the computed tilt does vary as the 
thresholding is changed; therefore it is in general best to apply thresholding first, before 
calculating ψx  and ψy and transforming away the tilt. None of the cases described in this 
paper employ remapping. 

First Two-Plane Sampling Method (“S”) 

Method S: 

Carry out the following steps repeatedly in a loop, until the requisite number of particles 
have been generated:  

1) Generate a random point in the 4-box bounded by the extremes of the 
(thresholded and shifted) measured data , and two random numbers, ρ1 and ρ2, on 
the unit interval 

2) With likelihood proportional to ƒ(x,x′) × ƒ(y,y′), tentatively accept the point; that 
is, keep it if ƒ(x,x′) > ρ1 and ƒ(y,y′) > ρ2 (it is statistically equivalent to keep the 
point if ƒ(x,x′) × ƒ(y,y′) > ρ1, with only a single random number generated) 

3) Apply clipping, as controlled by the input parameter CLIP, which is generally set 
to unity: Accept point as a particle in the synthesized distribution if and only if its 
coordinates (with each component normalized to the extent in x, y, x′, or y′ of the 
region where ƒ is nonzero) lie inside all of: 

a) four “4-cylinders,” the extrusions of circles of radius CLIP in the (x,y), 
(x′,y′), (x,y′), and (y,x′) planes, along the two Cartesian axes out of the 
corresponding plane 

b) a 4D hyperellipsoid of radius 21/2 CLIP 

To clarify this, in implementing Step 3) above we define a “flag” variable IFIN, which 
denotes whether each trial point lies in the clipping volume, as the product of a series of 
logical results (either 0 or 1, denoting false and true, respectively) associated with each 
volume tested in computing the intersection: 

IFIN = {(x/a)2 + (y/b)2 < CLIP} × {(x′/a′)2 + (y′/b′)2 < CLIP} 

 × {(x/a)2 + (y′/b′)2 < CLIP} × {(x′/a′)2 + (y/b)2 < CLIP} (12) 

 × {[(x/a)2 + (y/b)2 + (x′/a′)2 + (y′/b′)2]1/2 < 21/2 CLIP} , 
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where the quantities a, b, a′, b′ are normalizing factors for the x, y, x′, and y′ coordinates, 
respectively. That is, 

 a ≡ (xlastr–xlastl) / 2, (13) 

where 

 xlastr (xlastl) ≡ the maximal (minimal) xij such that ƒ(xij,x′ij) > 0, (14) 

and similarly for b, a′, and b′. The alternative definition: 

 a ≡ the maximal |xij| such that ƒ(xij,x′ij) > 0 (13′) 

    = max(|xlastr|,| xlastl|) 

appears more natural and may in fact be superior in many cases. However, the use of the 
former definition can yield a more compact distribution for any given value of the input 
parameter CLIP, at the expense of a greater degree of clipping. alternatively, if the 
clipping volume is centered on (xmid,ymid,x′mid,y′mid), where xmid ≡ (xlastr+xlastl) / 2, etc., 
rather than on the center of mass, then the prescriptions (13) and (13′) are equivalent. The 
centering of the clipping volume is, in our testbed program, controlled by the input 
variable CENTER, which can be set to either AVG or MID. For beams with a significant 
displacement of (xmid,ymid,x′mid,y′mid) from (xavg,yavg,x′avg,y′avg), the use of AVG can lead to 
a clipping region which is bounded by one or more sides of the 4D data grid.  

This method has worked well on the RFQ problem to which we have applied it (as 
described below). However, it suffers from two shortcomings. Firstly, the clipping leads 
to some inconsistency with the measured data. Secondly, the clipping volume, and in fact 
the concept of clipping itself, is ad hoc in nature. The methods we proceed to discuss 
attempt to address these issues. We begin with a discussion of the sampling volumes used 
in the generalized methods. 

Sampling Volumes for the Generalized Methods 

For the methods described below, several options for the sampling region (the region 
retained in the clipping process described above) have been explored. They are described 
here for convenient reference. In our test program, the input parameter CLIPALG is used to 
make the selection. 

CLIPALG = 0: This first option yields a sampling region similar to that of the S method, 
that is, the intersection of the interiors of an upright 4-ellipsoid and four 4-cylinders, 
except for a minor generalization: the radii of the cylinders, CLIP, and of the ellipsoid, 
CLIPELLIPSOID, are independently set by the code user. We thus have: 
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IFIN = {(x/a)2 + (y/b)2 < CLIP}   × {(x′/a′)2 + (y′/b′)2 < CLIP} 

 × {(x/a)2 + (y′/b′)2 < CLIP} × {(x′/a′)2 + (y/b)2 < CLIP} (15) 

 × {[(x/a)2 + (y/b)2 + (x′/a′)2 + (y′/b′)2]1/2 < CLIPELLIPSOID} . 

CLIPALG = 1: This option uses only a 4-ellipsoid of radius CLIPELLIPSOID, but “tilts” it, 
shifting x′ of the edges of the sampling region by an amount linear in the x coordinate 
(and similarly for y′). The tilting is adjusted so that the extremes of the ellipsoid in x have 
the same x′ as the bin with the largest value of |x| (and similarly for y). We have: 

IFIN = {(x/a)2 + (y/b)2 + [(x′-sxx)/c′]2 + [(y′-syy)/d′]2}1/2 < CLIPELLIPSOID , (16) 

where the “slope” sx is computed by averaging x′ at the extreme edge of the beam, at xlastr 
or xlastl, whichever has the larger magnitude, e.g.,: 

 sx ≡ 〈x′(xlastr) 〉 / xlastr (17) 

and the normalizing factor c′ is: 

 c′ ≡ the maximal |x′ij-sxxij| such that ƒ(xij,x′ij) > 0 , (18) 

and similarly for the slope sy and the normalizing factor d′. 

CLIPALG = 2: This option also uses only a 4-ellipsoid, but generalizes the prescription 
used in CLIPALG  = 1 by shifting both x′ and x coordinates of the boundary of the 
sampling volume for a more tightly-fitted ellipsoid (and similarly for y): 

IFIN = {[x-qx(x′-sxx)]2/hx
2 + [y-qy(y′-syy)]2/hx

2  

  + [(x′-sxx)/c′]2 + [(y′-syy)/c′]2}1/2 < CLIPELLIPSOID , (19) 

where qx and hx are given by: 

 qx ≡ xij* / x′ij* (20) 

  ij* ≡ indices of the maximal |x′ij| such that ƒ(xij,x′ij) > 0 (21) 

 hx ≡ the maximal |xij-qx(x′ij-sxxij)| such that ƒ(xij,x′ij) > 0 , (22) 

and similarly for qy and hy. 

CLIPALG  = 3: This option was specially developed for the mock problem described 
below; it effectively wraps the sampling volume precisely around the waterbag boundary 
of that problem: 

  IFIN = x2 + y2 + (x′-µx3)2 + y′2 < 1 , (23) 
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where µ is an input parameter generally set to 1.75. 

As will be seen, the use of a small “smooth” sampling volume whose “equators” match 
the boundaries of the measured data in two planes appears highly desirable; but the 
synthesis of such a volume seems hard to accomplish in general. This in part motivated 
the development of the “anticorrelation” method, described below. 

Two-Plane Method using Bin Counts (“G1”) 

This first “G” method is a statistically-correct variant of the “S” algorithm which 
reproduces, in the limit of many particles, the measured (x,x′) and (y,y′) data. It too is 
based on random sampling from a 4-box. 

The method begins by assigning target “counts” N(x,x′) and N(y,y′) of the numbers of 
particles to be loaded into each “bin” in (x,x′) and into each bin in (y,y′), proportional to 
the measured ƒ in that bin. Since the bin counts must be integers and yet must sum to the 
desired total number of simulation particles, a simple scaling and rounding procedure 
applied to ƒ(x,x′) and ƒ(y,y′) may be insufficient. A first effort to resolve this relied on 
varying the scaling factor (i.e., the nominal target number of simulation particles) until 
the desired number of simulation particles was loaded. This too failed when bin counts 
were obtained via “nearest grid point” weighting of simulation particle coordinates, since 
multiple cells tended to have the same input ƒ, and their bin counts were incremented as a 
block when the scaling was adjusted past a threshold. A similar problem would occur 
when experimental data is digitized using relatively few bits. Other procedures based on 
adjusting the rounding threshold were observed to fail similarly. A procedure which does 
seem to work well is to add a small random number to the pre-rounding bin counts; then 
bins are incremented individually as the scaling is gradually adjusted, and it is possible to 
obtain exactly a sum of bin counts equal to any desired number of synthesized particles. 

Method G1: 

Assign target “counts” N(x,x′) and N(y,y′) to the bins as described above. 

Carry out the following steps repeatedly in a loop, until the requisite number of particles 
have been generated and all “bin counts” have been decremented to zero, or until a user-
specified maximum number of passes through the loop have been completed, whichever 
occurs first:  

1) Generate a random point in the 4-box bounded by the extremes of the 
(thresholded and shifted) measured data 

2) Accept the randomly-placed point only if it: 
i) falls within the “clipping” (now really “sampling”) region, and  
ii) falls in a pair of bins both having nonzero counts 
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3) If the point has been accepted, decrement the counts in the corresponding 
bins by one 

Use of the bin counts offers the advantage of minimal statistical noise in the generated 
distribution, since (assuming success of the algorithm) the correct number of particles 
(within ±1) is loaded into each “cell” in both (x,x′) and (y,y′). However, the procedure is 
computationally slow since most trial points fail to be accepted, especially toward the end 
of the process. 

In addition, it is possible for the algorithm to fail to successfully place the desired number 
of particles because of a pitfall, which we refer to as “painting itself into a corner.” This 
can arise when a number of points near the center of the distribution in both (x,x′) and 
(y,y′) have been loaded, and so the counts in those regions have become depleted. Then, 
when the algorithm attempts to decrement a bin near the periphery in (x,x′), it cannot pair 
that bin with one near the periphery in (y,y′) because that combination would not satisfy 
the clipping constraint. If no bins near the center of the distribution in (y,y′) remain, then 
the algorithm cannot decrement all bin counts to zero. In our numerical experiments we 
have observed this to be a minor effect, and only a small fraction of the bin counts are not 
fully depleted. The error introduced by this effect has in general been smaller than the 
fluctuation-induced error of method G2, described below.  

If it is necessary to improve on this, an iterative procedure might be devised wherein 
loaded particles near the middle of the distribution in 4-space might be excised and the 
corresponding bin counts incremented, so that the outliers near the periphery might be 
able to be placed. Alternatively, a non-random search procedure might be used, whereby 
bins near the periphery in (alternately) one plane and then the other would be loaded first. 

Two-Plane Method using Corrected Probabilities (“G2”) 

The second “G” method is also a statistically-correct variant of the “S” algorithm, and is 
implemented via a straightforward modification of that method. It too is based on random 
sampling from a 4-box, but it does not sample with the input probabilities directly. 
Rather, it uses “corrected” acceptance probabilities which are obtained by dividing the 
input probabilities in (x,x′) and (y,y′) by the (normalized) area of the “slice” of the 4D 
sampling region in the other principal plane at that bin’s location. This method yields 
results similar to those of method 1. It offers gains in speed and simplicity, and is 
immune to the “painting into a corner” problem, but suffers from larger fluctuations in 
the number of particles in each 4-bin. 
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Method G2: 

Define the two-volumes Vyy′ = the total number of data nodes in the (y,y′) plane, and 
Vxx′ = the total number of data nodes in the (x,x′) plane. 

First consider the (x,x′) plane. For each data node (xij,x′ij), compute Vij = the number of 
nodes (each indexed by kl) in the (y,y′) plane for which the node location (xij,x′ij,ykl,y′kl) 
falls inside the clipping region. Compute the modified likelihood via: 

 G(xij,x′ij) = ƒ(xij,x′ij) Vyy′ / Vij , if Vij > 0 (24) 

 = 0,                           if Vij = 0 . 

The (y,y′) plane is handled similarly. For each data node (ykl,y′kl), compute Vkl = the 
number of nodes (each indexed by ij) in the (x,x′) plane for which the node location 
(xij,x′ij,ykl,y′kl) falls inside the clipping region. Compute the modified likelihood via: 

 G(ykl,y′kl) = ƒ(ykl,y′kl) Vxx′ / Vkl , if Vkl > 0 (25) 

 = 0,                            if Vkl = 0 . 

It is desirable at this point to check whether any cells with nonzero ƒ(xij,x′ij) have Vij = 0 
and have thus been excluded by the clipping process; and to check similarly in the (y,y′) 
plane. If the input distribution is to be matched by the output, this should be avoided by 
enlarging the clipping region. 

The procedure then tracks that of the S method. Carry out the following steps repeatedly 
in a loop, until the requisite number of particles have been generated:  

1) Generate a random point in the 4-box bounded by the extremes of the measured 
data, and two random numbers, ρ1 and ρ2, on the unit interval 

2) With likelihood proportional to G(x,x′) × G(y,y′), tentatively accept the point; that 
is, keep it if G(x,x′) > ρ1 and G(y,y′) > ρ2 

3) Accept point as a particle in the synthesized distribution if and only if its 
coordinates (x,x′,y,y′) lie inside the clipping region, as set by the parameters 
CLIPALG, CLIP, and CLIPELLIPSOID 

It is possible to imagine improvements to this procedure, e.g., carrying out the integrals 
which yield Vij and Vij more precisely, using not just the node locations (which may be 
thought of as cell centers) but rather the actual fractions of the 4-cell volumes inside the 
clipping region. Use of a finer grid of nodes would have a similar effect. However, the 
main limitations appear to be associated with the somewhat arbitrary clipping volume. 
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Three-Plane Method using Bin Counts (“G7”) 

This method is closely related to the two-plane version G1, but takes advantage of the 
extra information available when a spatial density scan has yielded ƒ(x,y). 

Method G7: 

Assign target “counts” N(x,x′) and N(y,y′) to the bins as described above. Also assign 
N(x,y) by a similar procedure. 

Carry out the following steps repeatedly in a loop, until the requisite number of particles 
have been generated and all “bin counts” have been decremented to zero, or until a user-
specified maximum number of passes through the loop have been completed, whichever 
occurs first:  

1) Generate a random point in the 4-box bounded by the extremes of the 
(thresholded and shifted) measured data 

2) Accept the randomly-placed point only if it: 
i) falls within the “clipping” (now really “sampling”) region, and  
ii) falls in a triad of bins all having nonzero counts 

3) If the point has been accepted, decrement the counts in the corresponding 
bins by one 

Two-Plane Method based on Anticorrelation (“G3”) 

Another class of statistically-correct algorithms is based on an assumed anticorrelation, of 
a particular kind, of the (x,x′) and (y,y′) densities. The assumed anticorrelation can 
actually be viewed as either a postulate or as the consequence of two other assumptions; 
here we follow the latter course. The first assumption is: 

Assume that the beam distribution was, at an earlier time, well described by a set 
of nested hyperellipsoidal contours each with uniform phase space density, and 
with the peak phase space density at the center of the  distribution (the simplest 
case is a uniformly-filled 4-ellipse) 

Then, because ƒ(x,x′) = ∫∫ƒ(x,y,x′,y′) dy dy′, bins near the “edge” in (x,x′) with small 
ƒ(x,x′) are that way largely because there is only a small region in (y,y′) with nonzero 
density at that (x,x′). 



 

As an analogy, consider the unit 3-sphere; particles with the largest |x| all have small |y| 
and |z|. Thus there is only a small area in (y,z) that contributes at large |x|. See Fig. 3. 

 

FIG. 3. Illustration of 3-D analogue of the anticorrelation described in the text. 

By similar reasoning, in a uniformly-filled (upright) 4-ellipse, particles with small ƒ(x,x′) 
have small |y| and |y′|, and a particular anticorrelation obtains, as is illustrated in Fig. 4. 

Particles with small ƒ(x,x′) must have large ƒ(y,y′) 
 but 
particles with large ƒ(x,x′) may have “any” ƒ(y,y′) 

 

FIG. 4. Illustration of the anticorrelation described in the text. In the figure: 
- Particles in region “c” (between contour levels) are all in region “1”. 
- Particles in region “b” are all in regions “1” or “2”. 
- Particles in region “a” can be in regions “1”, “2”, or “3”. 

The (x,x′) and (y,y′) density contours will have been distorted by the time they reach the 
measurement station. Thus we add another assumption: 

Assume that the distortion mechanisms involved no coupling between motions in 
the (x,x′) and (y,y′) planes. 

 16 
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Then, Liouville’s theorem says that the 2D ƒ’s remain constant along orbits, and the 
anticorrelation described above persists. 

Method G3: 

Assign target “counts” N(x,x′) and N(y,y′) to the bins as described above for Method 1. 

Carry out the following steps repeatedly in a loop, until the requisite number of particles 
have been generated and all “bin counts” have been decremented to zero:  

1) Load a particle into a random location within the (x,x′) bin with the smallest 
nonzero N(x,x′) and within the (y,y′) bin with the largest N(y,y′). (If multiple bins 
have the same counts, choose randomly.) 

2) Decrement the counts N(x,x′) and N(y,y′) in the appropriate bins. 

Toward the end of the process, the distribution of counts in (y,y′) becomes flat. This 
algorithm is asymmetric with respect to the roles of the input (x,x′) and (y,y′) 
distributions, but the result appears to be invariant to an interchange of those roles. 

IV. MODEL PROBLEM 

This idealized “mock” problem was employed as a means of developing our 
understanding of the methods and their performance. We consider a “waterbag” 
distribution with uniform phase space density in the distorted 4-sphere: 

 x2 + y2 + (x′ - µx3)2 + y′2 < 1 , (26) 

where µ is usually set to 1.75. This distortion does not change the occupied volume. 

In Fig. 5 three views of the (x,x′) and (y,y′) planes of the “true” particle distribution are 
shown. These planes are used to generate input to the various methods. The views include 
“scatter plots” of the particle locations, color contour plots, and “cell array” (filled mesh) 
plots, obtained by nearest-grid-point weighting from the particles. For the most part we 
rely on scatter plots in this paper, but it is beneficial to view data (especially experimental 
data) using a variety of graphical representations and color tables. 

In Fig. 6 all six principal Cartesian projections of the true input distribution are shown. 
The structure in the (x′,y′) and (y,x′) planes should be noted.  

In Fig. 7 the result of naïve application of the product of the (x,x′) and (y,y′) probabilities 
is shown. Note the good fidelity in the (x,x′) and (y,y′) projections, and the spurious 
“squareness” in the other projections.  
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In Fig. 8 the results of using the S method, with clip = 1, are shown. The spurious 
“squareness” is improved by the application of clipping, but persists. The (x,x′) and (y,y′) 
projections are slightly inaccurate, as a result of the clipping; the tips of the former are 
very slightly thinned (they are less dense, and are slightly truncated), and the density 
distribution of the latter is slightly distorted. These effects are hard to see graphically but 
are evident when moments over the “true” and synthesized particle distributions are 
computed. 

In Fig. 9 the results of using the G1 method with clipalg = 0 are shown; parameters clip 
and clipellipsoid were set so that the sampling volume was identical to that used by the S 
method. The “equators” of the sampling volume are shown in the plots of the (x,x′) and 
(y,y′) planes. Those input planes are accurately reproduced; the spurious “squareness” in 
the other planes such as (x′,y′) is reduced but is not eliminated. 

In Fig. 10 the results of using the G1 method with clipalg = 1 are shown; the sampling 
volume is an ellipsoid which is tilted in the (x,x′) plane, as described earlier. The 
“equator” of the sampling volume is shown in the plot of the (x,x′) plane. Again, the 
input planes are accurately reproduced; the spurious “squareness” in the other planes is 
reduced (to a slightly greater degree than for CLIPALG = 0), but is not eliminated. 

In Fig. 11 the results of using the G1 method with CLIPALG = 2 are shown; the sampling 
volume is a more tightly fitted tilted ellipsoid, as described earlier. The “equator” of the 
sampling volume is shown in the plot of the (x,x′) plane. Again, the input planes are 
accurately reproduced; the spurious “squareness” in the other planes is reduced. 

In Fig. 12 the results of using the G1 method with CLIPALG = 3 are shown. The sampling 
volume matches the beam boundary. All planes are accurately reproduced, because the 
method is exact (within discretization errors) for a waterbag distribution when the 
boundaries are made to coincide. 

In Fig. 13 the results of using the G3 method (which does not require specification of a 
sampling volume) are shown. All planes are accurately reproduced, because the method 
is exact (within discretization errors) for a waterbag distribution of this type. 

From these results we see the desirability of wrapping the sampling volume boundary 
tightly around the beam. The use of more tightly-fitted ellipsoids should be advantageous 
in real problems, but it is difficult in general to synthesize a sampling volume that wraps 
tightly around a highly distorted beam, especially when one does not know the 4D shape 
of that beam, and when the beam has a gradual falloff of density rather than a sharp 
boundary. This motivates the search for parameter-free methods such as the G3 method, 
which works well on this model problem. 



 

(a) (b)

(c) (d)

(e) (f)

 

FIG. 5 (color). Projections of “true” particle distribution for “mock” problem. These 
planes are used to generate input to the various methods. Three representations are 
shown: in (a) and (b), “scatter plots” of the particle locations, in (c) and (d) color contour 
plots with 19 discrete contour levels (colors), arranged to provide additional detail at low 
density; and in (e) and (f) “cell array” (filled mesh) plots with more than 200 colors, 
obtained by nearest-grid-point weighting from the particles. The color bars at right of (c-
f) show a linear scale from zero to peak of the data. 
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FIG. 6. Projections of “true” particle distribution for “mock” problem used for algorithm 
development. Planes at top of page are used to generate input to the various methods; 
these and the other planes are used to assess the success of the methods. 
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FIG. 7. Projections of “mock” problem particle distribution obtained by naïve application 
of the product of the (x,x′) and (y,y′) probabilities. Note the good fidelity in the (x,x′) and 
(y,y′) projections, and the spurious “squareness” in the other projections. 
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FIG. 8. Projections of “mock” problem particle distribution obtained by application of the 
S method. The spurious “squareness” is improved by the application of clipping, but 
persists. The (x,x′) and (y,y′) projections are slightly inaccurate. 
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FIG. 9. Projections of “mock” problem particle distribution obtained by application of the 
G1 method and CLIPALG =  0. The sampling volume was the same as that used for the S 
method. 
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FIG. 10. Projections of “mock” problem particle distribution obtained by application of 
the G1 method and CLIPALG =  1. The sampling volume is a tilted ellipsoid. 
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FIG. 11. Projections of “mock” problem particle distribution obtained by application of 
the G1 method and CLIPALG =  2. The sampling volume is a more tightly fitted tilted 
ellipsoid. 
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FIG. 12. Projections of “mock” problem particle distribution obtained by application of 
the G1 method and CLIPALG = 3. The sampling volume matches the beam boundary, and 
the method gives the “exact” answer for the mock problem, within discretization errors. 
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FIG. 13. Projections of “mock” problem particle distribution obtained by application of 
the G3 method. The method gives the “exact” answer for the mock problem, within 
discretization errors. 
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V. INJECTION INTO RFQ PROBLEM BASED ON EXPERIMENTAL DATA 

We now consider application of the methods to a first “real” problem: a 65-keV H- source 
and a two-lens electrostatic Low Energy Beam Transport system feeding a radio-
frequency quadrupole accelerator. The layout is depicted in Fig. 14. 

 

FIG. 14 (color). Schematic of ion source and Low Energy Beam Transport (LEBT) 
system for injector feeding an RFQ accelerator. The indicated beam particle trajectories 
are merely suggestive, and exaggerate the degree to which the aperture is filled. 

We carried out a scan of both lens voltages, and took two-plane phase-space data for each 
voltage pair. The scanner was of the Allison type, that is, it used a variable deflection 
voltage to sweep the beam across the second slit, rather than moving that slit. We then 
used the S method to synthesize particle distributions, and simulated beam transmission 
through the RFQ for each data set. We found that the RFQ transmission fraction peaked 
at exactly the predicted value of lens voltages, within experimental error. The results had 
greater fidelity to the experiments than those obtained using idealized initial distributions, 
e.g., a simple 4D waterbag. 

An example of the input data is shown in Fig. 15. The beam is distorted due to the 
aberrations induced by the various beamline elements. The data exhibit some noise, and 
some points are missing; the algorithms must deal with such effects gracefully. 
Thresholding was performed by subtracting 0.06 from the data (previously normalized to 
range from 0 to 1), then dividing by (1-0.06) = 0.94 to renormalize the data. This resulted 
in retention of 69.4% of the total count in (x,x′) and of 57.8% in (y,y′). A compact, if 
distorted, beam is the result. No removal of the mean (x,x′) tilt was performed. 
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(c) (d)

(a) (b)

 

FIG. 15 (color). Raw input data in (a) plane (x,x′)and (b) plane (y,y′), and thresholded 
input data in (c) plane (x,x′)and (d) plane (y,y′). Color denotes intensity; lines across the 
color-bars to the right of the images denote 0, 10%, …, 100% of peak intensity. 

The results of applying various methods to the thresholded data, synthesizing a set of 
50,000 particles, are shown in Figs. 16-23. Figures 16 and 17 show cell-array plots 
obtained by nearest-grid-point mapping of the synthesized particle set into bins in (x,x′) 
and (y,y′). Figure 18 shows cell-array plots of the synthesized (x,y) projection for all of 
the methods tested. Figures 19-23 show “scatter” plots of 5000 of the particles projected 
onto the six principal Cartesian axes. 

In Figs. 16 and 19 the S method was employed. The extremes of the distribution have 
been slightly truncated and the colors do not match those of the input images exactly; 

 29 



 

 30 

both of these artifacts are results of the clipping. The (x,y) projection (in Figs. 18 and 19) 
has a simple shape, with some noise evident at its left edge. 

In Fig.  20 the G1 method with CLIPALG = 0 was employed. We do not show the cell-
array plots of the (x,x′) and (y,y′) projections because the method is sufficiently “exact” 
that the plots are indistinguishable from those in Fig. 15. In this case the phenomenon of 
“painting into a corner” was not an issue; all but one of the desired 50,000 particles was 
successfully loaded. The (x,y) projection (in Figs. 18 and 20) resembles that of the S 
method but has smaller cell-to-cell fluctuations. 

In Figs. 17 and 21 the G2 method with CLIPALG = 0 was employed. The results resemble 
those of the G1 method but are noisier; detailed examination of the moments of the 
synthesized distribution shows that the reproduction of the input data also suffers 
somewhat because the correction of the probabilities is imperfect, due to the crudeness of 
the integrals performed using just the node centers. The (x,y) projection (in Figs. 18 and 
21) differs in detail from the two immediately above, but in general all three methods 
using the “S-like” clipping region yield similar results, differing primarily in their noise 
level and their degree of fidelity to the input data. 

In Figure 22 the G2 method with the tilted-ellipsoid CLIPALG = 1, CLIPELLIPSOID = 1.3, 
CENTER = “mid”, was employed. We do not show the cell-array plots of the (x,x′) and 
(y,y′) projections because they closely resemble those of Fig. 17. Again some additional 
“noise” associated with the modest number of particles in each bin is evident. This time, 
qualitative differences are evident in the (x,y) projection (in Figs. 18 and 22), which now 
exhibits a broader “tail” at left, associated with the shape of the clipping region. 

In Fig. 23 the G3 method which requires no user-settable parameters describing a 
sampling region was employed. Here again we do not show the cell-array plots of the 
(x,x′) and (y,y′) projections because the method is sufficiently “exact” that the plots are 
indistinguishable from those in Fig. 15. The (x,y) projection (in Figs. 18 and 23), and 
indeed the other non-input projections (in Fig. 23) are qualitatively different from those 
of the other methods, in that the method tends to pull out narrow “tails” as necessary to 
satisfy the need for consistency with the input data. This may seem a natural approach, 
since aberrations in applied and self-fields often preferentially affect the particles at the 
outside of the distribution. A proper assessment requires that we either know the 
“correct” answer (which we indeed do know for simulated data, as in the following 
section), or can discern greater fidelity to experiment in simulations of the downstream 
system using one synthesis method or another. 

Table I shows the moments of the input distribution and of the various synthesized 
distributions. Note the near-exact agreement with the input data for the bin-based 
methods G1 and G3. 
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                   <x>           <x´>        <y>           <y´> 
 true           -0.0512702     0.0174406   -0.0956311   -0.00152390 
 S              -0.0511420     0.0179291   -0.0950784   -0.00160050 
 G1 clipalg=0   -0.0512550     0.0174326   -0.0956295   -0.00152277 
 G2 clipalg=0   -0.0477220     0.0154727   -0.0960640   -0.00148848 
 G2 clipalg=1   -0.0415696     0.0159627   -0.0964068   -0.00130404 
 G3             -0.0512580     0.0174318   -0.0956304   -0.00152238 
  
                   <xx´>         <yy´>        <xy>         <x´y´> 
 true           -0.000718996  -0.000659834     --           -- 
 S              -0.000883782  -0.000617363  0.00485649  -2.74791e-05 
 G1 clipalg=0   -0.000718136  -0.000659876  0.00489727  -2.24467e-05 
 G2 clipalg=0   -0.000294878  -0.000760568  0.00458730  -2.37916e-05 
 G2 clipalg=1   -0.000512324  -0.000728030  0.00403814  -1.97213e-05 
 G3             -0.000718042  -0.000659914  0.00493310  -2.83877e-05 
 
                   x rms         x´ rms       y rms        y´ rms 
 true            0.0763887     0.0238792    0.0464589     0.0232978 
 S               0.0716974     0.0229140    0.0452524     0.0226395 
 G1 clipalg=0    0.0764222     0.0238761    0.0464525     0.0232985 
 G2 clipalg=0    0.0854201     0.0256229    0.0491085     0.0247265 
 G2 clipalg=1    0.0824613     0.0238921    0.0480306     0.0237619 
 G3              0.0764243     0.0238765    0.0464525     0.0232984 
   
                   xx´rms        yy´rms       xy rms       x´y´rms 
 true            0.00251650    0.00232828      --           -- 
 S               0.00233499    0.00226495   0.00780659   0.000654713 
 G1 clipalg=0    0.00251687    0.00232825   0.00833170   0.000747419 
 G2 clipalg=0    0.00273412    0.00244101   0.00923673   0.000717199 
 G2 clipalg=1    0.00253258    0.00237507   0.00909147   0.000689639 
 G3              0.00251694    0.00232824   0.00833995   0.000546162 
  
 rms emittances:   (x,x´)        (y,y´) 
 true            0.00181567    0.00072293 
 S               0.00164254    0.00067631 
 G1 clipalg=0    0.00181622    0.00072283 
 G2 clipalg=0    0.00214330    0.00081121 
 G2 clipalg=1    0.00196436    0.00075741 
 G3              0.00181629    0.00072283 

Table I. Moments of the RFQ injection problem input data and of the various synthesized 
distributions; for the latter, moments were computed by depositing particle data onto the 
grid using nearest-grid-point weighting. 



 

 

FIG. 16 (color). Cell-array plots obtained by applying S method with CLIP = 1.1, 
CENTER = “mid”, and nearest-grid-point mapping of the set of 50,000 synthesized 
particles into bins; planes as noted in figure. 

 

FIG. 17 (color). Cell-array plots obtained by applying G2 method with CLIPALG = 0, 
CLIP = 1.1, CLIPELLIPSOID = 1.54, CENTER = “mid”, and nearest-grid-point mapping of the 
set of 50,000 synthesized particles into bins; planes as noted in figure. 
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FIG. 18 (color). Cell-array plots of (x,y) projections derived using five methods as noted 
in figure, obtained by nearest-grid-point binning of 50,000 synthesized particles. 

 33 



 

 

FIG. 19. Particle “scatter” plots obtained by applying S method with CLIP = 1.1, 
CENTER = “mid”, planes as noted in figure. 
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FIG. 20. Particle “scatter” plots obtained by applying G1 method with CLIPALG = 0, 
CLIP = 1.1, CLIPELLIPSOID = 1.54, CENTER = “mid”; planes as noted in figure. 
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FIG. 21. Particle “scatter” plots obtained by applying G2 method with CLIPALG = 0, 
CLIP = 1.1, CLIPELLIPSOID = 1.54, CENTER = “mid”; planes as noted in figure. 
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FIG. 22. Particle “scatter” plots obtained by applying G2 method with CLIPALG = 1, 
CLIPELLIPSOID = 1.3, CENTER = “mid”; planes as noted in figure. 
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FIG. 23. Particle “scatter” plots obtained by applying G3 method; planes as noted in 
figure. 
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VI. HIF INJECTOR PROBLEM BASED ON SIMULATION DATA 

In order to better assess the performance of the algorithms under development, it seemed 
important to study a realistic example where the “correct” answer was known. No data 
set describing a full 4D distribution is available from experiments. We thus used the 
output of a 3D WARP simulation of the electrostatic quadrupole (ESQ) injector [6] being 
used at LBNL as the front end of the High Current Experiment (HCX) [7] being 
conducted in the HIF research program. The simulated beam is depicted in Fig. 24, which 
also shows (from left to right) the high-voltage stalk surrounded by voltage-grading rings; 
the triode (gun) region consisting of the emitting surface (anode), switching electrode 
(gate), and extraction electrode (cathode); and the set of electrostatic quadrupole lenses 
which both confine and further accelerate the beam by means of an overall gradient 
superposed on bipolar quadrupole rod voltages. 

 

FIG. 24. 3D simulation of ESQ injector using WARP code; the simulated beam at the 
exit plane is the test problem described in this section. 

The WARP3d simulations were carried out in a “steady-state” operating mode, emitting a 
steady stream of particles from the source and iterating to convergence on the field 
solution, in an effort to obtain a high-fidelity representation of the mid-pulse of the beam 
where its properties may reasonably be considered time-invariant. (Other simulations use 
the code’s time-dependent mode to capture the behavior at the beam head and tail.) Thus, 
it was possible to obtain a reasonably large data set by accumulating the particle data 
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over many time steps at the same z, once the field solution had converged. The 
longitudinal coordinates of the simulation particles were examined after each time step, 
and those particles “landing” within a prescribed small distance of the exit plane of the 
injector were selected. The transverse coordinates and momenta of those particles were 
corrected, using an extrapolation over the distance from their individual longitudinal 
positions to the exit plane. By this means, a set of 102288 particles was obtained. In the 
syntheses shown, 51 grid points were used along each of the four principal Cartesian axes 
to define the “true” phase-space density. Table II and Figs. 25-31 summarize the results. 

In Fig. 25, projections of the “true” distribution as supplied by WARP3d are shown; 
10,000 particles are shown in each frame. The structure is complicated because of 
aberrations induced by non-paraxial flow in the triode “gun,” and by the applied and self-
fields in the ESQ accelerating and focusing structure. Note the “rim” in the (x,y) plane, 
associated with “translaminar” flow induced by the gun optics. By symmetry, the 
quantities in the first two rows of Table II are essentially zero. Note that, in contrast with 
the previous example, data is available on such quantities as the “true” RMS of (xy). 

In Fig. 26, the results of applying the S method are shown. The method fails to reproduce 
moments such as (xx´)RMS and the (x,x´) emittance faithfully (see the table). As with all 
methods which do not make explicit use of the (x,y) projection, the method does not 
synthesize the “rim” in (x,y) that is observed in the “true” data. Also, as with all the 
methods, some features of the other “unknown” projections are not correctly synthesized. 

In Fig. 27 the results of applying the G1 method with CLIPALG = 0 and a sampling region 
identical to that of the S method are shown. Almost all, 102285, of the requested 102288 
particles were generated. In contrast with the S method, a modest rim is suggested by the 
(x,y) projection and is reflected in a more accurate value of (xy)RMS. All of the “known” 
moments (available from the (x,x´) and (y,y´) projections) are accurately reproduced. 

In Fig. 28 the results of applying the G2 method with CLIPALG = 0 and a sampling region 
identical to that of the S method are shown. A partial rim in (x,y) is evident at only the 
upper, lower, left, and right edges of the beam; this is an artifact of the method’s attempts 
to correct probabilities using crude integrals. The “known” moments are not accurately 
reproduced due to the errors in probabilities, and also due to enhanced fluctuations 
relative to the “bin” based methods. 

In Fig. 29 the results of applying the G2 method with CLIPALG = 1 and 
CLIPELLIPSOID = 1.2 are shown. With this “large” value of CLIPELLIPSOID, the beam 
appears somewhat “square” in (x,y). However, even at this value some of the populated 
cells in both the (x,x´) and (y,y´) projections are clipped away; use of a smaller value to 
eliminate the “squareness” would exclude more of the populated cells. 

In Fig. 30 the results of applying the G3 method are shown. Despite excellent 
reproduction of the “known” moments, the synthesized (x,y) projection is poor. 
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 <x>           <x´>          <y>           <y´> 
 true           -5.12358e-18   6.47141e-19  -3.39060e-18   2.77510e-19 
 S              -1.61739e-05  -1.25606e-06   6.29751e-05   7.71156e-07 
 G1 clipalg=0   -2.95645e-06  -5.00562e-08   4.92741e-06  -2.12739e-07 
 G2 clipalg=0   -2.41358e-05  -1.55795e-06  -0.000164664  -1.63929e-06 
 G2 clipalg=1   -3.18786e-05  -1.90834e-06  -0.000100141  -8.75958e-08 
 G3             -2.06476e-06  -9.22884e-08   3.98874e-06  -8.91600e-08 
 G7              6.26125e-08  -3.75675e-08   2.39493e-06  -2.09752e-07 
  
                   <xx´>         <yy´>         <xy>          <x´y´> 
 true           -2.82253e-18   4.99587e-18   4.11489e-07   1.74175e-09 
 S               1.66828e-06   7.40595e-07   9.79196e-07   3.83169e-10 
 G1 clipalg=0    6.37966e-09   2.76310e-09  -9.08270e-07  -1.07721e-09 
 G2 clipalg=0   -2.14564e-06  -9.82017e-07  -1.32745e-07  -1.24236e-09 
 G2 clipalg=1    3.53987e-08   1.14057e-07   6.33618e-07  -1.16628e-10 
 G3              2.43266e-09  -5.13061e-10  -1.00873e-06   4.22963e-11 
 G7              5.73280e-09  -3.38108e-10   2.91098e-07  -7.28810e-10 
 
                   x rms         x´ rms       y rms        y´ rms 
 true            0.0207051     0.000643990   0.0191242     0.000611029 
 S               0.0187002     0.000600425   0.0174473     0.000572439 
 G1 clipalg=0    0.0207041     0.000643666   0.0191242     0.000610622 
 G2 clipalg=0    0.0220313     0.000686674   0.0200806     0.000627863 
 G2 clipalg=1    0.0218298     0.000670973   0.0195460     0.000623362 
 G3              0.0207050     0.000643912   0.0191249     0.000610969 
 G7              0.0207023     0.000643859   0.0191234     0.000610889 
   
                   xx´rms        yy´rms       xy rms       x´y´rms 
 true            1.67396e-05   1.45560e-05    0.000332161  4.41434e-07 
 S               1.37048e-05   1.27497e-05    0.000279593  3.22351e-07 
 G1 clipalg=0    1.67235e-05   1.45482e-05    0.000317864  4.62113e-07 
 G2 clipalg=0    1.94509e-05   1.56537e-05    0.000324187  3.62190e-07 
 G2 clipalg=1    1.79111e-05   1.49995e-05    0.000355712  3.80647e-07 
 G3              1.67350e-05   1.45556e-05    0.000362058  2.22061e-07 
 G7              1.67270e-05   1.45548e-05    0.000332094  4.66602e-07 
  
 rms emittances:   (x,x´)        (y,y´) 
 true            1.33339e-05   1.16854e-05 
 S               1.11034e-05   9.95998e-06 
 G1 clipalg=0    1.33265e-05   1.16777e-05 
 G2 clipalg=0    1.49754e-05   1.25695e-05 
 G2 clipalg=1    1.46471e-05   1.21837e-05 
 G3              1.33322e-05   1.16847e-05 
 G7              1.33294e-05   1.16822e-05 

Table II. Moments of the WARP-simulated ESQ problem input data and of the various 
synthesized distributions. 



 

 

FIG. 25. Particle “scatter” plots showing “true” WARP-generated beam distribution in all 
six principal Cartesian planes, for comparison to synthesized distributions, as noted in 
figure. In each plot, 10,000 particles are shown. 
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FIG. 26. Particle “scatter” plots of synthesized distributions using S method with 
CLIP=1.0; planes as noted in figure. 
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FIG. 27. Particle “scatter” plots of synthesized distributions using 2-plane method G1. 
with CLIPALG=0, CLIP=1.0, CLIPELLIPSOID=1.4; planes as noted in figure. 102285 of the 
desired 102288 particles were generated. 
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FIG. 28. Particle “scatter” plots of synthesized distributions using 2-plane method G2. 
with CLIPALG=0, CLIP=1.0, CLIPELLIPSOID=1.4; planes as noted in figure. 
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FIG. 29. Particle “scatter” plots of synthesized distributions using 2-plane method G2. 
with CLIPALG=1, CLIPELLIPSOID=1.2; planes as noted in figure. 
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FIG. 30. Particle “scatter” plots of synthesized distributions using 2-plane method G3; 
planes as noted in figure. 
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FIG. 31. Particle “scatter” plots of synthesized distributions using 3-plane method G7. 
with CLIPALG=0, CLIP=1.0, CLIPELLIPSOID=1.4; planes as noted in figure. 102216 of the 
desired 102288 particles were generated. 
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In Fig. 31 the results of applying the 3-plane method G7 with CLIPALG=0, CLIP=1.0, 
CLIPELLIPSOID=1.4 are shown. 102216 of the desired 102288 particles were generated. 
The “known” moments are accurately reproduced, as is the rim in(x,y). The few 
“missing” particles are perhaps associated with the “painting into a corner effect.” For 
this problem, the G7 method appears to be the method of choice when it can be used. 

To assess the utility of the synthesis concept in general, and of the various methods in 
detail, we have begun to carry out simulations of the HCX beam line downstream of the 
ESQ injector. Here, a self-consistent simulation using the “slice” model WARPxy and 
beginning with the “true” WARP output data at the ESQ exit, as shown above, serves as 
the reference case. Another simulation used an idealized distribution, the RMS-equivalent 
“semi-Gaussian” beam (flat-top in its spatial profile and Maxwellian in its velocity 
coordinates); that is, the beam had the same RMS size, emittance, and “tilt” in each 
principal plane. We also carried out simulations using the two-plane G1 synthesis shown 
in Fig. 27, and the three-plane G7 synthesis shown in Fig. 31. The resulting “histories” of 
the (x,x´) and (y,y´) emittances are shown in Fig. 32. 

It is evident that use of either synthesis procedure enables a simulation of the downstream 
system which is far superior to that which can be obtained using a simple RMS-
equivalent beam. The latter fails to capture several of the features seen in the emittance 
evolution. In addition, the 3-plane synthesis does better than either the 2-plane synthesis 
or the semi-Gaussian at capturing the initial emittance evolution. It is strikingly accurate 
for the (y,y´) emittance; in the (x,x´) plane its qualitative behavior is similar to that of the 
self-consistent distribution, but the size of the jump at the exit of the matching section 
(z = 0) is incorrect. The short-time behavior is of particular importance in the HCX 
experiments because the beam will be diagnosed while it is still evolving rapidly; the 
experiment will not be long enough for the “asymptotic” regime in which the beam has 
settled down to a near steady-state to be reached. This simulation effort has just begun. 
More results and details will be presented in a future article. 

VII. DISCUSSION AND RECOMMENDATIONS 

We anticipate that the methods described here will be of significant utility in experiment 
analysis. Their performance on the problems described in this paper is encouraging, and 
the failure of simple idealized distributions to yield acceptable answers provides strong 
motivation to employ the best available synthesis techniques. 

Of the various methods presented here, the G1 and G7 (bin-based) methods seem to 
consistently offer faithful reproduction of “known” moments and of the phase-space 
projections in the “known” planes. It should be possible to improve on those methods, 
e.g. by eliminating the “painting into a corner” syndrome as suggested earlier.  
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FIG. 32 (color). WARPxy simulations: downstream evolution of (x,x´) and (y,y´) 
emittances for self-consistent, 2-plane reconstruction, 3-plane reconstruction, and semi-
Gaussian beams. The axial location z = 0 corresponds to the end of the matching section. 
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The superior performance of the 3-plane G7 method leads us to recommend its use 
whenever possible. The spatial information provided by a spatial density (crossed-slit) 
scan guarantees that the potential energy will be correctly included in the initialization of 
a simulation of the downstream system. Because the kinetic energy folds in the various 
velocity components in quadrature, and all synthesis methods do a good job of 
reproducing the x and y velocity distributions, inclusion of this plane’s information 
guarantees that the total energy in the simulation will be correct. 

An unattractive aspect of the methods based on a sampling volume is the need for the 
user to specify the clipping parameters. This requires a degree of judgment on the part of 
the user, and introduces the possibility of subjective bias. Thus, we were initially 
encouraged by the good performance of the anticorrelation-based G3 method on the 
model problem and its apparently reasonable performance on the RFQ-injection problem. 
However, its failure to generate a reasonable spatial distribution in the ESQ problem 
leads us to believe that the assumptions on which it is based are not satisfied for that 
problem. In other applications it may be the method of choice. 

We believe that it is possible to improve on the anticorrelation-based method. Perhaps an 
attractive method might result from insisting that all points are chosen from a sampling 
region. Ideally, we would prefer to develop another “parameter-free” method based on 
geometrical properties that are actually present in systems such as the ESQ injector. 
Clearly there is room for invention in this area.  

We plan to continue research into other synthesis methods. On the practical side, it will 
be important to develop a method tuned for synthesizing a beam distribution near the 
“gun” exit, where the beam is (nearly) axisymmetric and may be well-described by 
ƒ(r,pr,pθ), where r and θ are the usual polar coordinates. We also would like to develop a 
means of incorporating any extra available information, e.g. localized data at high 
resolution, into the synthesis. Finally, we would like to establish a firmer theoretical basis 
for these methods, and to investigate whether there may be other guiding principles that 
can be employed, e.g. maximum entropy principles, in completing the problem 
specification. 

In addition to this “inverse” approach, we are also working on the “forward” problem via 
integrated simulations starting from the source. To achieve agreement with experimental 
data at downstream stations, it is necessary to vary (within the experimental error bars) 
voltages, alignment, and/or source inhomogeneities. While the “forward” approach is 
more consistent than the one described in this paper, it can be laborious (sometimes 
prohibitively so). In any event, we anticipate that much of our day-to-day work will be 
done using the synthesis procedures described here. 
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